• 服务与支持
  • 技术优势
  • 服务理念
  • 资源下载
  • 联系我们
  • 中文/EN
  • letou官方网-乐投娱乐网-乐投娱乐场

    更新日期:2017-01-04
    摘要:

    变压吸附(Pressure Swing Adsorption.简称PSA),是一种新型气体吸附分离技术,它有如下优点:⑴产品纯度高。⑵一般可在室温和不高的压力下工作,床层再生时不用加热,节能经济。⑶设备简单,操作、维护简便。⑷连续循环操作,可完全达到自动化。因此,当这种新技术问世后,就受到各国工业界的关注,竞相开发和研究,发展迅速,并日益成熟。

    变压吸附(Pressure Swing Adsorption.简称PSA),是一种新型气体吸附分离技术,它有如下优点:⑴产品纯度高。⑵一般可在室温和不高的压力下工作,床层再生时不用加热,节能经济。⑶设备简单,操作、维护简便。⑷连续循环操作,可完全达到自动化。因此,当这种新技术问世后,就受到各国工业界的关注,竞相开发和研究,发展迅速,并日益成熟。
     
     
    利用吸附剂的平衡吸附量随组分分压升高而增加的特性,进行加压吸附、减压脱附的操作方法。吸附是放热过程,脱附是吸热过程,但只要吸附质浓度不大,吸附热和脱附热都不大,因此变压吸附仍可视作等温过程。变压吸附一般是常温操作,不须供热,故循环周期短,易于实现自动化,对大型化气体分离生产过程尤为适用。变压吸附的工业应用有:①空气和工业气体的减湿;②高纯氢的制备;③空气分离制富氧或富氮空气(见彩图);④混合气体的分离,如烷烃、烯烃的分离。⑤生物降解洗涤剂中间物,石脑油高纯度正构烷烃熔剂和异构体的分离;6,制取高纯度一氧化碳,回收利用工业尾气。
    变压吸附
    变压吸附
      我们现在主要使用的吸附剂有变压吸附硅胶、活性氧化铝、高效Cu系吸附剂(PU-1)、锂基制氧吸附剂(PU-8)等。其中山东辛化生产的变压吸附硅胶是针对变压吸附气体分离技术开、研究的脱炭、提纯专用吸附剂。第三代(SIN-03)同过特殊的吸附剂生产工艺,控制吸附剂的孔径分布及孔容,改变吸附剂的表面物理化学性质,使其具有吸附容量大,吸附、脱炭速度快,吸附选择性强,分离系数高,使用寿命长等特点。
    2 概况
      1960年Skarstrom提出PSA专利,他以5A沸石分子筛为吸附剂,用一个两床PSA装置,变压吸附制氮
      从空气中分离出富氧,该过程经过改进,于60年代投入了工业生产。80年代,变压吸附技术的工业应用取得了突破性的进展,主要应用在氧氮分离、空气干燥与净化以及氢气净化等。其中,氧氮分离的技术进展是把新型吸附剂碳分子筛与变压吸附结合起来,将空气中的O2和N2加以分离,从而获得氮气。随着分子筛性能改进和质量提高,以及变压吸附工艺的不断改进,使产品纯度和回收率不断提高,这又促使变压吸附在经济上立足和工业化的实现。
    3 原理
      任何一种吸附对于同一被吸附气体(吸附质)来说,在吸附平衡情况下,温度越低,压力越高,吸附量越大。反之,温度越高,压力越低,则吸附量越小。因此,气体的吸附分离方法,通常采用变温吸附或变压吸附两种循环过程。
      
    3.1 压力不变
    如果压力不变,在常温或低温的情况下吸附,用高温解吸的方法,称为变温吸附(简称TSA)。显然,变温吸附是通过改变温度来进行吸附和解吸的。变温吸附操作是在低温(常温)吸附等温线和高温吸附等温线之间的垂线进行,由于吸附剂的比热容较大,热导率(导热系数)较小,升温和降温都需要较长的时间,操作上比较麻烦,因此变温吸附主要用于含吸附质较少的气体净化方面。
      
    3.2 温度不变
    如果温度不变,在加压的情况下吸附,用减压(抽真空)或常压解吸的方法,称为变压吸附。可见,变压吸附是通过改变压力来吸附和解吸的。变压吸附操作由于吸附剂的热导率较小,吸附热和解吸热所引起的吸附剂床层温度变化不大,故可将其看成等温过程,它的工况近似地沿着常温吸附等温线进行,在较高压力(P2)下吸附,在较低压力(P1)下解吸。变压吸附既然沿着吸附等温线进行,从静态吸附平衡来看,吸附等温线的斜率对它的是影响很大的,在温度不变的情况下,压力和吸附量之间的关系,如图示所示,图中PH表示吸附压力,PL表示解吸(减压后)压力,这时PH与PL所应的吸附量的差,实质上是有效吸附量,以Ve表示之。显然,直线型吸附等温线的有效吸附量比曲线型(Langmuir型)的要来得大。吸附常常是在压力环境下进行的,变压吸附提出了加压和减压相结合的方法,它通常是由加压吸附、减压再组成的吸附一解吸系统。在等温的情况下,利用加压吸附和减压解吸组合成吸附操作循环过程。吸附剂对吸附质的吸附量随着压力的升高而增加,并随着压力的降低而减少,同时在减压(降至常压或抽真空)过程中,放出被吸附的气体,使吸附剂再生,外界不需要供给热量便可进行吸附剂的再生。因此,变压吸附既称等温吸附,又称无热再生吸附。
      
    3.3 变压吸附,吸附,PSA
    变压吸附,吸附,PSA来自空气压缩机的压缩空气,首先进入冷干机脱除水分,然后进入由两台吸附塔组成的PSA制氮装置,利用塔中装填的专用碳分子筛吸附剂选择性地吸附掉O2、CO2等杂质气体组分,而作为产品气N2将以99%的纯度由塔顶排出。
      
    3.4 降压
    在降压时,吸附剂吸附的氧气解吸出来,通过塔底逆放排出,经吹洗后,吸附剂得以再生。完成再生后的吸附剂经均压升压和产品升压后又可转入吸附。两塔交替使用,达到连续分离空气制氮的目的。用碳分子筛制氮主要是基于氧和氮在碳分子筛中的扩散速率不同,在0.7-1.0Mpa压力下,即氧在碳分子筛表面的扩散速度大于氮的扩散速度,使碳分子筛优先吸附氧,而氮大部分富集于不吸附相中。碳分子筛本身具有加压时对氧的吸附容量增加,减压时对氧的吸附量减少的特性。利用这种特性采用变压吸附法进行氧、氮分离。从而得到99.99%的氮气。
    4 变压吸附发展史
      变压吸附letou官方网制氧始创于20世纪60年代初(Skarstrom,1960;GuerindeMontgarenil&Domine,1964),并于70年代实现工业化生产。在此之前,传统的工业letou官方网装置大部分采用深冷精馏法(简称深冷法)80年代以来至今CaX和LiX等高吸附分离性能的沸石分子筛的相继开发利用和工艺流程的改进,使得变压吸附letou官方网技术得到迅速地发展,与深冷letou官方网装置相比,PSA过程具有启动时间短和开停车方便、能耗较小和运行成本低、自动化程度高和维护简单、占地面积小和土建费用低等特点。在不需要高纯氧的中小规模(小于100吨/天,相当于3000Nm3/h)氧气生产中比深冷法更具有竞争力。广泛的应用于电炉炼钢、有色金属冶炼、玻璃加工、甲醇生产、碳黑生产、化肥造气、化学氧化过程、纸浆漂白、污水处理、生物发酵、水产养殖、医疗和军事等诸多领域(杨,1991;Kumar,1996;Jee,Park,Haam&Lee,2002)。四十多年来变压吸附letou官方网制氧技术的研究进展主要表现在两个方面:一是letou官方网制氧吸附剂和其吸附理论的研究方面,二是letou官方网制氧工艺循环过程的研究方面(Sircar,1994;Ruthven.Farooq&Knaebel,1994)。国内对这项技术的研究尽管起步较早,然而在较长的一段时间内发展相对较缓。直至进入九十年代以来,变压吸附制氧设备的优越性才逐渐被国人认可,近几年各种流程的设备相继投产为各行各业带来了巨大的经济效益。
    5 变压吸附法 (PSA)
      近期发展起来的新工艺。Skarstrome等人于1960年发明,最初在工业上主要用于空气干燥和氢气纯化。1970年后才开发用于空气制氧或制氮,1976年后逐渐开发成功用碳分子筛,或用沸石分子筛的真空变压吸附法,从空气中制氧或氮,1980年实现了用单床PSA法吸附制取医用氧。
      吸附分离是利用吸附剂只对特定气体吸附和解析能力上的差异进行分离的。为了促进这个过程的进行,常用的有加压法和真空法等。分子筛变压吸附分离空气制取氧的机理,一是利用分子筛对氮的吸附亲和能力大于对氧的吸附亲和能力以分离氧,氮;二是利用氧在碳分子筛微孔系统狭窄空隙中的扩散速度大于氮的扩散速度,使在远离平衡的条件下可分离氧氮。
      变压吸附法制氧,氮在常温下进行,其工艺有加压吸附/常压解析或常压吸附/真空解析两种,通常选用沸石分子筛制氧,碳分子筛制氮。1991年,日本三菱重工制成世界上最大的PSA制氧设备,其氧产量可达8650m3/h。进入90年代以来,我国的PSA/VPSA制氧设备逐渐系列化,近年来锂基分子筛因其性能更为稳定、高效,被越来越多的大规模应用,实现装置大型化生产,单套变压吸附装置产量最高可达40700m3/h,氧纯度≥90%,产品氧能耗可达0.32~0.37kw.h/m3。